Hierarchical multiresolution method to overcome the resolution limit in complex networks
نویسندگان
چکیده
The analysis of the modular structure of networks is a major challenge in complex networks theory. The validity of the modular structure obtained is essential to confront the problem of the topology-functionality relationship. Recently, several authors have worked on the limit of resolution that different community detection algorithms have, making impossible the detection of natural modules when very different topological scales coexist in the network. Existing multiresolution methods are not the panacea for solving the problem in extreme situations, and also fail. Here, we present a new hierarchical multiresolution scheme that works even when the network decomposition is very close to the resolution limit. The idea is to split the multiresolution method for optimal subgraphs of the network, focusing the analysis on each part independently. We also propose a new algorithm to speed up the computational cost of screening the mesoscale looking for the resolution parameter that best splits every subgraph. The hierarchical algorithm is able to solve a difficult benchmark proposed in [Lancichinetti & Fortunato, 2011], encouraging the further analysis of hierarchical methods based on the modularity quality function.
منابع مشابه
Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...
متن کاملLimited resolution and multiresolution methods in complex network community detection
Detecting community structure in real-world networks is a challenging problem. Recently, it has been shown that the resolution of methods based on optimizing a modularity measure or a corresponding energy function is limited; communities with sizes below some threshold remain unresolved. One possibility to go around this problem is to vary the threshold by using a tuning parameter, and investig...
متن کاملMultiresolution Neural Networks Based on Immune Particle Swarm Algorithm
Inspired by the theory of multiresolution analysis (MRA) of wavelets and artificial neural networks, a multiresolution neural network (MRNN) for approximating arbitrary nonlinear functions is proposed in this paper. MRNN consists of a scaling function neural network (SNN) and a set of sub-wavelet neural networks, in which each sub-neural network can capture the specific approximation behavior (...
متن کاملImprovement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملData clustering using community detection algorithms
One of the most important problems in science is that of inferring knowledge from data. The most challenging issue is the unsupervised classification of patterns (observations, measurements, or feature vectors) into groups (clusters) according to their similarity. The quantification of similarity is usually performed in terms of distances or correlations between pairs. The resulting similarity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 22 شماره
صفحات -
تاریخ انتشار 2012